

ModSecurity
OWASP CRS 3.0

Open Source Web Application Firewall

Introduction

ModSecurity is an Apache Module providing a
Web Application Firewall by enforcing rules
against requests and responses.

It has since been extended to work on other web
servers such as Nginx.

The Core Rule Set from OWASP is what makes
ModSecurity useful.

Useless By Itself

When you install Mod Security on your web
server, it does nothing until you start writing rules.

The Core Rule Set is a popular starting point
providing a large range of general rules.

OWASP

OWASP is an open community dedicated to
enabling organizations to conceive, develop,
acquire, operate, and maintain applications that
can be trusted. All of the OWASP tools,
documents, forums, and chapters are free and
open to anyone interested in improving
application security.

Version 3.0

The current version is a major
improvement.

The rules are better organized.

There are far fewer false positives.

There are custom exception sets for
the two most popular CMS programs.

Installing ModSecurity

✔ apt-get install libapache2-mod-security2

✔ cp modsecurity.conf-recommended
000-modsecurity.conf

✔ Add SecRuleEngine On to your virtual hosts

✔ Restart Apache

Processing a Request

ModSecurity has 5 Phases

1)Request Header and Protocol Analysis
2)Body Analysis
3)Response Header Analysis
4)Response Body Analysis
5)Logging

The Phases
The preceding shows ModSecurity in relation to
the apache request cycle.

Phase I has access to the headers this is where
protocol enforcement rules occur, notice it is
before URI translation which means it will also
operate before rewrite.

For example the CRS sets up a list of allowed
Request Types, disallowing for example DELETE
by default.

The Phases

Phase II has access to the body before the
response is generated, this is where the data
being submitted by the client can be looked at.

Phase I and Phase II are where most of the
ModSec activity occurs, because they are where
incoming data is coming from.

The Phases

Phase III and Phase IV analyze the Response
Header and Body respectively. If you’re proxying
an IIS server for example, the CRS has rules to
prevent code leakage.

Phase V logs. There are a lot of logging options
for ModSec. Enabling the Debug log will allow you
to capture request data that cannot otherwise be
captured.

Performance

➢ ModSecurity can be configured to log when a
phase or a rule takes too much time.

➢ Frequently the problem is scanning large form
fields with complex regular expressions.

➢ The long running rules can be tuned or disabled

SecRule REQUEST_URI "(env\.cgi|info\.php)"
"Phase:1,\
 Id:990101,\

tag:'prevent access to env.cgi and
info.php',\

logdata:'attempt to access env or info
page',\

log,block"

An Example of a Rule

Example Rule

SecRule REQUEST_URI "(env\.cgi|info\.php)"
SecRule is the keyword for defining a rule,
REQUEST_URI defines what the rule will look at and the
quoted text is a regular expression to be run against it.

The rest of the rule is all enclosed in double quotes with
line breaks using the \ terminator. If additional quoting is
needed single quotes are used internally.

Example Rule

"
Phase:1,\

 Id:990101,\
tag:'prevent access to env.cgi and

info.php',\
logdata:'attempt to access env or info

page',\
Log,\
block\

"

Core Rule Set

SQL Injection (SQLi)
Cross Site Scripting (XSS)
Local File Inclusion (LFI)

Remote File Inclusion (RFI)
Remote Code Execution (RCE)

PHP Code Injection
HTTP Protocol Violations

Session Fixation
Scanner Detection

Metadata/Error Leakages

Organization

For upgraders the organization of the 3.0 ruleset
is much better than the previous version.

The rules are grouped into files by attack types
and also by vector so there are two files that are
PHP specific, if you’re not using PHP then you
know you don’t need them, whereas in the old
ruleset you had to find and disable all of the PHP
rules if you didn’t want to waste time processing
them on every request.

Installing the CRS
Whereas ModSecurity is pretty stable and easier
to install from repositories than to compile your
own apache module. The CRS is likely to be out
of date in your distribution and very easy to pull in
from source.

cd /opt
git clone
 https://github.com/SpiderLabs/
 owasp-modsecurity-crs.git

Modes

The CRS has two modes: Anomaly Scoring and
Self-Contained. The default is Anomaly but
beginners and simpler installations will prefer
Self-Contained.

Anomaly assigns a score to every rule that
triggers and decides based on the total score of
the request whether to take an action.

Self-Contained takes an action whenever a rule
triggers, usually block.

Copy the CRS-setup example and include it in
your config to load immediately after
modsecurity.conf.

Comment the default SecDefaultAction lines and
replace with (each is a single line)

SecDefaultAction
 "phase:1,log,auditlog,deny,
 status:406"
SecDefaultAction
 "phase:2,log,auditlog,deny,
 status:406"

We’ve told mod security that the default
action for any rule is to deny.

We’ve also set a distinct status code and
chosen an appropriate one not likely to be
generated normally.

Popular Codes to use are
405 and 406 (Method Not Allowed and Not
Acceptable)
Or to use a code that could be ‘normal’
400 (Bad Request) and 403 (Forbidden)

Paranoia Level

The Paranoia Level is a global setting of 0 to 4.

The higher the Paranoia Level more and stricter
rules are run.
Costs of Paranoia
➢ Longer Processing time for more rules
➢ More False Positives
➢ More time tuning to mitigate false positives.

Links and References

 Mod Security HandBook
 https://modsecurity.org/

 https://modsecurity.org/crs/
 https://www.owasp.org/index.php/Category:OWA

SP_ModSecurity_Core_Rule_Set_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

