
J O H N  K A R R   

P H I L A D E L P H I A  L I N U X  U S E R S  G R O U P  

M A R C H  2 0 1 4  

Object Oriented Solutions for 
Structured Data Access 



What is a Database? 

 A Database is a mechanism for storing and retrieving 
data on a computer system.  

 A database is characterized by the ability to 
selectively and quickly retrieve data from it.  

 There are two principal Tribes of DataBase: 
Relational and Non-Relational. 

 



Non-Relational DataBases 

 The classic non-relational databases are DBM and 
BerkeleyDB, these key value databases while much 
faster than simple file system archival, still need to 
search every record to find 'Red House‘ unless it 
happens to be the key. 

 Modern Non-Relational Databases, often referred to 
as NoSQL, such as Hadoop, MongoDB, Cassandra, 
and CouchDB, are much much better at selective 
data retrieval. They've become popular due to 
simplicity and speed. 

 



Relational Databases 

 What differentiates a Relational Database is that it 
maintains relations between objects and usually 
has mechanisms to enforce data integrity.  

 During the early days of the PC revolution dBASE 
was ubiquitous, but ultimately lost out to SQL for 
Multi-User applications and Access and FileMaker 
for single user applications.  

 



SQL was developed at IBM by Donald D. Chamberlin, 
Donald C. Messerly, and Raymond F. Boyce in the early 
1970s. The acronym stands for Structured Query Language.  

 Data Definition Language used to define and manipulate 
data structures. 

 Data Manipulation Language for querying and 
manipulating data.  

 the ACID principle:  

 Atomicity 

 Consistency 

 Isolation 

 Durability 
 



ACID 

 Atomocity:  No other operations will be affected by 
a write until it is complete and entire. 

 Consistency: All actions must leave the database in 
a state consistent with its rules. Aborted transactions 
should have no effect. 

 Isolation: One transaction must not affect another. 

 Durability: Once a transaction is committed it must 
persist even through crashes. 



MongoDB Example 

#!/usr/bin/ruby  

require 'mongo'  

include Mongo  

mongo_client = MongoClient.new("localhost", 
27017)  

puts 'List of databases'  

mongo_client.database_info.each {  

 |info| puts info.inspect }  

mydb =  

  MongoClient.new("localhost", 27017).db("mydb")  

mycoll = mydb.collection("testCollection")  

doc = {  

"name" => "MongoDB",  

"type" => "database",  

"count" => 1,  

"info" => {"x" => 203, "y" => '102'}  

}  

mycoll.insert(doc)  

5.times { |i| mycoll.insert("i" => i) }  

puts ‘display the records'  

mycoll.find.each { |row| puts row.inspect }  

mycoll.remove  

OUTPUT 
 
List of databases  
["mydb", 218103808]  
["local", 83886080]  
insert some records and display all of the records  
{"_id"=>BSON::ObjectId('5313978c23e9694081000001'
), "name"=>"MongoDB", "type"=>"database", 
"count"=>1, "info"=>{"x"=>203, "y"=>"102"}}  
{"_id"=>BSON::ObjectId('5313978c23e9694081000002
'), "i"=>0}  
{"_id"=>BSON::ObjectId('5313978c23e9694081000003
'), "i"=>1}  
{"_id"=>BSON::ObjectId('5313978c23e9694081000004
'), "i"=>2}  
{"_id"=>BSON::ObjectId('5313978c23e9694081000005
'), "i"=>3}  
{"_id"=>BSON::ObjectId('5313978c23e9694081000006
'), "i"=>4}  
 



A similar example in SQL (Postgres) 

#SQL 

 

CREATE TABLE plug 

(   i integer,   

 id serial NOT NULL,   

 info character varying,   

 CONSTRAINT pkey_plug_id PRIMARY KEY (id) ) ; 

GRANT ALL ON TABLE plug TO test; 

GRANT ALL ON TABLE plug_id_seq TO test; 

 

#RUBY 

require 'pg'  

 

jsondata = <<JSOND  

'{  

"name" : "MongoDB",  

"type" : "database",  

"count": 1,  

"info" : {"x" : 203, "y" : 10 }  

}'  

JSOND  

 

 

  

conn = PG::Connection.open(  

  :dbname => 'test',  

  :host => 'test',  

  :user => 'test',  

  :password => 'test')  

 

conn.exec( ”insert into plug ( info ) values ( 

#{jsondata} )" )  

5.times {   |i|  

conn.exec( "insert into plug ( i ) values ( #{i} )" )  

}  

res = conn.exec( 'select * from plug' )  

res.each do |row|  

row.each do |column|  

print "#{column}\t"  

end  

print "\n"  

end  

  

conn.exec( 'truncate plug')  

 



The Results 

["i", nil] ["id", "79"] ["info", "{\n \"name\" : \"MongoDB\",\n \"type\" : \"database\",\n \"count\": 1,\n \"info\" : 

{\"x\" : 203, \"y\" : 10 }\n}"]  

["i", "0"] ["id", "80"] ["info", nil]  

["i", "1"] ["id", "81"] ["info", nil]  

["i", "2"] ["id", "82"] ["info", nil]  

["i", "3"] ["id", "83"] ["info", nil]  

["i", "4"] ["id", "84"] ["info", nil]  

 



Why Mongo is better 

 Create objects on the fly. 

 Collections accept dissimilar records. 

 Although Mongo supports requiring authentication 
of users, it was not mandatory to grant the test 
account explicit rights to the table and the sequence. 

 Generally much more concise data manipulation 
syntax. 

 Fast retrieval without defining and managing 
indexes. 

 

 



Why SQL is better 

 Imposes structure on data. 
 Extensible through user defined functions (Stored 

Procedures). This allows Business Intelligence to be 
implemented in the DBMS. 

 ACID.  
 While Mongo gave us a primary key which we had to 

define in SQL, SQL will allow almost any conceivable sort 
of data constraint. 

 SQL can combine multiple actions into a single 
transaction with changes only committed on success of 
all actions. 

 SQL supports triggers which execute when an event 
occurs. 



Structured Data 

 This talk is about structured data, so the rest of the talk is 
going to be about SQL. I’ll be using Postgres. 

 SQL was designed in the 1970s and while very powerful it 
is also verbose and repetitious.  

 

 DBI first appeared in 1992 to allow Perl programs to 
access SQL data.  

 Because Perl's DBI is kind of cumbersome at times I use 
a DBI Wrapper, DBIx::Simple. DBIx::Simple is a very 
thin sugary coating on DBI and some auxiliary Modules 
frequently used in conjunction with it.  



Bind Values 

SQL is very verbose and repetitious and does not natively follow an object 
oriented approach that would allow programmers to implement a DRY 
(Don’t Repeat Yourself) approach to writing code.  

If we use just SQL our code is going to be littered with HERE Documents, 
or whatever the equivalent is in your language of choice. To facilitate 
reuse of Queries most SQL libraries support ‘Bind Variables’, when there 
are a lot of variables, managing them becomes its’ own issue. 
 

my $query = <<QUERY ; 

INSERT (shell, filling, cheese, lettuce, sauce, peppers ) 

INTO taco 

VALUES( ?,?,?,?,?,? ) 

QUERY 

 

$DB->query( $query, 'crunchy', 'beef', 'TRUE', 'TRUE', 'medium', 'FALSE' ); 
 



In the late 1990s there began to appear SQL abstraction tools, such as 
DBIx::Abstract (now officially deprecated in favor of SQL::Abstract).  
 
With SQL::Abstract you can generate the more common sql statements 
from an Associative Array. Since programmers are often working with 
data in Associative Arrays, this at least saves writing a lot of SQL in here 
documents. 
 

my %taco_details = () ; 

if ( $soft ) { $taco_details{shell} = 'soft' }  

else { $taco_details{shell} = 'crunchy' } 

... 

$DB->insert( 'taco', \%taco_details ); 

 

(without DBIx::Simple the following would generate variables for dbi.) 

my ( $stmt, @bind ) = $abstract->insert($table, \%fieldvals) ; 

 



ORM 

 The next step in the evolution of working with SQL were 
Object Relational Mappers, ORM.  

 Generally the goal of ORM is to provide an object 
oriented abstraction layer above your database so that 
you can work with your data as a native object in your 
language. A secondary goal followed by most ORMs is to 
provide database independence.  

 In 2003 Martin Fowler in Patterns of Enterprise 
Application Architecture defined two patterns that 
summarize most ORM implementations: 
 
 







Ruby Activbe Record 

 The most popular and well known ORM is probably 
Ruby's Active Record. 

 Here's an example stolen from Michael Hartl's Ruby 
on Rails Tutorial 

>> User.find_by_email("mhartl@example.com") 

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com", 
created_at: "2013-03-11 00:57:46", updated_at: "2013-03-11 00:57:46"> 

 



DBIx::Class 

 n Perl the dominant ORM is DBIx::Class. There is some 
confusion as to whether DBIx::Class is an Active Record 
implementation. Yes and No. DBIx::Class was written 
completely independent of Ruby's Active Record (in fact it 
was written as a replacement for one of the earliest ORMs, 
Class::DBI), and I don't believe that its' author Matt Trout had 
read Fowler's book.  

 DBIx::Class does generally follow the Active Record Pattern 
described by Fowler.  

 This is the preceeding example in DBIx::Class.  
 
my $result = $schema->resultset('User')->find(  
    { email => "mhartl@example.com" } ); 
say $result->id ; 
say $result->name ; 
say $result->email ; 

 



Advantages and Disadvantages of ORM 

 Philosophically, ORMs approach the DataBase as a 
repository of the application's data.  

 Conversely a DBA might see the Database itself as 
the object of importance, and the program as a 
means to access the Data.  
 
If your view is DataCentric then most ORMs are 
written backwards. 

 Database Independence also means forgoing useful 
Database specific features. 



The Next Generation 

 Both DBIx::Class and Active Record are about a 
decade old now.  

 In that time the hot development is the new 
generation of NoSQL.  

 There are ORMs for NoSQL, but a lot of their allure 
is that they are more compatible with modern 
programming from the beginning.  
 
 



My Project 

 Vaporware: The PostgreSQL DataObject (PgDO) 

 Perl Object Oriented Extension to Postgres. 

 Can use all Postgres features because no other DBMS 
is supported. 

 Encourage SQL when appropriate, avoid mundane 
SQL. 

 DOML (Data Object Markup Language) to concisely 
represent database objects. 

 Extension to DOML to permit providing formatted 
data to the View in Model View Controller. 


